

LENSES

Materials, Types and Treatments

www.EyeSystems.info

Mary E. Schmidt, ABOC, CPO

mary@EyeSystems.info

Single Vision

- Spherical in design
 - All purpose, single focus, may be sphere or cylinder Rx's
- Aspheric in design
 - Improved cosmetics
 - Thinner and flatter
 - Single focus, may be sphere or cylinder Rx's

Original Thinking Unique Solutions *ystems*

Aspherical Lens Forms

- Aspheric Plus Lenses
 - Flattens in surface curve towards edge (like an egg)
 - All the standard characteristics of spherical plus lenses
 - Thinner in the center than spherical plus lenses
 - Magnify less (thinner & flatter)
 - Less bulbous
 - More asphericity in higher plus lenses
 - Provides good vision

Conventional Versus Aspheric Lens Designs

Aspherical Lens Forms

- Aspheric Minus Lenses
 - Steepens in surface curve towards edge (like a frisbee)
 - Thinner at the edge than spherical minus lenses
 - Minify less in lens periphery
 - Flattened

eSystems

Choosing the Right Design

- Choice is dependent on
 - Prescription
 - Patient want and need
 - Cost
 - Frame size and shape

Quick Tips – Single Vision

- Fitting and Dispensing
 - Spherical design lenses
 - Monocular PD's
 - OC along frame midline
 - Aspheric lenses
 - Monocular PD's

Bifocals

- EyeSystems
- Flat Top most commonly used
 - Available in 28, 35, 45mm
- Spherical in design
 - All purpose, double focus, may be sphere or cylinder Rx's
- Aspheric in design
 - Improved cosmetics, thinner and flatter
 - Double focus, may be sphere or cylinder Rx's
 - Only distance portion aspheric

EyeSystems

Trifocals

- Spherical in design 7x 28
 - All purpose
 - Triple focus; distance, mid-range (arm's length) and near
 - May be sphere or cylinder Rx's

DCAL LENSES

EveSystems

Multifocal Terms

Progressives

General Purpose

- Distance and near and all distances in between
- Blending zones
- Hard and soft designs
- Minimum fitting heights vary by manufacturer

Original Thinking Unique Solutions vstems

FREEFORM PROGRESSIVES

- Digital Surfacing
- Digitized
- Internal Free-Form
- Fingerprint Surfacing
- Customized
- Precise-Form

- Backside/Back Surface
- Dual-Surface
- Wavefront
- Fully Personalized
- HD
 - High Definition

Freeform Progressive

 FREEFORM surfacing creates a significant improvement over traditional processing by allowing production within 1/100 of a diopter in accuracy.

EyeSystems

Traditional Progressive vs. Freeform Progressive

• "Variable" Progressive –

Corridor length remains the same – reading area changes.

• "Fixed" Progressive

Reading area remains the same – corridor length changes.

EveSystems Power Changes and Patient Impact

EyeSystems Considerations for Freeforms

These considerations allow for an optimized wearing experience:

- Pantoscopic angle (PA)
- Vertex or Back Vertex Distance (BVD)

Usage:

Picture A:First try to select appropriate Frame that suits face and Rx then and adjust it on the patient's face before taking the measurement. Measure the PA as shown; you will get the Pantoscopic Angle(PA) with the needle.Adjust the Frame if required to achieve recommendation for patients comfort.

Picture B: For best results, Specially for Progressive Addition Lenses it is necessary to have Patient's IPD along with BVD and PA. BVD:Recommended as minimum as possible PA: 8° to 12° average 10°(recommended)

Picture C: The(BVD) Back Vertex Distance is the distance between the back of a correcting lens and the Cornea. The Scale for the BVD allows the measurement from both sides as the Zero is placed in the middle.

Original Thinking Unique Solutions *systems*

Measuring Vertex Distance

EyeSystems

• Panoramic angle and wrap

EyeSystems

Progressives

- Short Corridor
 - Designed for frames with narrow vertical dimensions

Unique Solutions Original Thinking ystems

Progressives

- Computer
 - Designed for increased mid-range viewing
 - Often do not have distance portion
 - Require deeper frames for best vision

Comparision

Lens Forms

- Occupational lenses
 - Create custom eyewear to meet occupational needs
- Occupational SV and bifocals
 - Distance and near, mid-range and near, distance and mid-range

Occupational trifocals

Distance, mid-range and near

Lens Forms

- Cataract and Low Vision lenses
 - Single Vision
 - Full Field, Lenticular
 - Bifocals
 - Full Field, Lenticular

Full Field RS & FT

Unique Solutions Original Thinking ystems

Glasses Prescription

		Sphere	Cylinder	Axis	Prism	Base
DISTANCE	00	-4.00			0.5	down
	0\$	-5.00	-0.50	180	0.5	up
ADD	00	+2.00				
	05	+2.00	1			

Important Eye Measurement

rstems

- Interpupillary distance or PD
 - Distance between the visual centers of the patient's two eyes
 - Used for proper centering of lenses
 - Measured best by corneal reflex pupillometer

veSystems

Quick Tips – Multifocals

Fitting and Dispensing

- Bifocals
 - Binocular distance and near PD's
 - Segment ledge at top of lower lid
 - Same segment height for each lens
- Trifocals
 - Binocular distance and near PD's
 - Segment ledge at bottom of pupil margin
 - Same segment height for each lens
- Progressives
 - Monocular PD's
 - Monocular fitting heights

Systems

Sports Lenses

- Protective eyewear
 - High impact Polycarbonate lenses and nearly unbreakable frames
 - UV absorption, special tints
 - High contrast filters; yellow, vermillion
 - Glare control; polarized lenses
 - Wrap frames for wind and dust
- Special designs
 - Out-of-the-way seg for golf

Lens Materials

Material Choices

- Hard Resin
 - Conventional plastic
 - Good all purpose material, tintable
 - Processed to 2.0mm ct
 - Available in virtually all designs
 - Available with scratch resistant and/or AR coatings
 - Cost \$
- High Index Resin
 - Thinner and lighter
 - Can be processed to 1.2mm ct
 - Available in most designs
 - Should be scratch and AR coated
 - For patient that wants best in category
 - 1.54, 1.55, 1.56, 1.57, 1.59, 1.60, 1.66, 1.70, 1.71
 - Cost **\$\$ \$\$\$\$**

- Impact Resistant (Poly, Trivex, Phoenix)
 - Most impact resistant, protective in high index material
 - Thinner and lighter
 - Can be processed to 1.0mm ct
 - Low abbe, reduces clear field of view in higher Rx's

eSystems

- Duty to Warn
- Cost \$
- Glass
 - Traditional material
 - Stable and precise optics
 - Good acuity
 - Chemical or heat tempered for FDA compliance
 - Heavy
 - High index available: 1.60, 1.70
 - Cost \$ to \$\$

Unique Solutions Original Thinking ystems

Thickness Comparisons

• -8.00 D

EyeSystems

Advising About Materials

• Lens Type — lifestyle, Rx and history

Refractive Index

Refractive Index

- the higher the index,
 the thinner the lens
- but thickness and specific gravity will affect final volume and

weight

EveSystems

Specific Gravity

Specific Gravity

- The lower the number, the less weight
- But index and thickness will affect final volume and weight

ABBE Value

• ABBE Number

- Dispersion or chromaticity, higher value has less

smearing

- But good design, surfacing and AR coatings minimizes the effects

EyeSystems

Material Comparison Chart

Lens Material	Refractive Index	Specific Gravity	Abbe Number
CR-39	1.499	1.32	58
Trivex (Trilogy, Phoenix)	1.530	1.11	45
HI 54	1.537	1.21	47
HI 55	1.550	1.28	38
HI 56	1.556	1.42	39
Polycarbonate	1.586	1.20	30
HI 60	1.592	1.30	42
HI 66/67	1.660/1.67	1.35	32
HI 70/71	1.700	1.41	36
Crown Glass	1.523	2.54	58
HI 60 Glass 1.601		2.62	40
HI 70 Glass 1.701		2.93	30
HI 80&90 Glass	Discontinued		

Original Thinking EyeSystems Unique Solutions

Treatments

- Scratch resistant coatings extend the longevity of the lenses, improve the value of lenses
- Lenses with deep or fine scratches reduce the quality of vision through and scatter light

Scratched versus unscratched lens Original Thinking EyeSystems Unique Solutions

Scratch Coatings

• Hard coatings are an integral part of a "system," and are engineered for compatibility with additional treatments

Surface Reflections

 A spectacle wearer can be bothered by 5 unique specular reflections, which are also affected by the surface curves of the lens

AR Benefits Wearers

Wearers look better and see better

Tints

- Tinting plastic lenses:
 - Plastic lenses are immersed in organic dyes, which permeate into the surface of the lens substrate (not affected by thickness)

Tints

- Tinting glass lenses:
 - Glass lenses have
 metallic oxides added
 to the initial raw
 mixture, which are
 dispersed throughout
 the bulk of the lens

Photochromism

LENSES ARE CLEAR WHEN INDOORS OR AT NIGHT AND AUTOMATICALLY DARKEN TO A SUNGLASS TINT WHEN EXPOSED TO SUNLIGHT.

Temperature Dependence

Implementing Lens Choices

 Talk with your patient

 Take the time to make the right choice

Educate your patient